Sorting Cancer Karyotypes by Elementary Operations

نویسندگان

  • Michal Ozery-Flato
  • Ron Shamir
چکیده

Since the discovery of the "Philadelphia chromosome" in chronic myelogenous leukemia in 1960, there has been ongoing intensive research of chromosomal aberrations in cancer. These aberrations, which result in abnormally structured genomes, became a hallmark of cancer. Many studies provide evidence for the connection between chromosomal alterations and aberrant genes involved in the carcinogenesis process. An important problem in the analysis of cancer genomes is inferring the history of events leading to the observed aberrations. Cancer genomes are usually described in the form of karyotypes, which present the global changes in the genomes' structure. In this study, we propose a mathematical framework for analyzing chromosomal aberrations in cancer karyotypes. We introduce the problem of sorting karyotypes by elementary operations, which seeks a shortest sequence of elementary chromosomal events transforming a normal karyotype into a given (abnormal) cancerous karyotype. Under certain assumptions, we prove a lower bound for the elementary distance, and present a polynomial-time 3-approximation algorithm for the problem. We applied our algorithm to karyotypes from the Mitelman database, which records cancer karyotypes reported in the scientific literature. Approximately 94% of the karyotypes in the database, totaling 58,464 karyotypes, supported our assumptions, and each of them was subjected to our algorithm. Remarkably, even though the algorithm is only guaranteed to generate a 3-approximation, it produced a sequence whose length matched the lower bound (and hence optimal) in 99.9% of the tested karyotypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On combinatorial properties of elementary intramolecular operations

Here we tackle a problem from biology in terms of discrete mathematics. We are interested in a complex DNA manipulation process happening in eukaryotic organisms of a subclass of ciliate species called Stichotrichia during so-called gene assembly. This process is in particular interesting since one can interpret gene assembly in ciliates as sorting of permutations. We survey here results relate...

متن کامل

1 Warehouse Math

In this chapter I show that elementary math models reveal powerful insights that can help understand better design and management decisions in facility logistics operations. Subsequently I develop models for designing a truckoperated unit-load warehouse (sizing it, calculating the load orientation, and determining the warehouse lengthwidth ratio). Next the optimal stacking depth is calculated a...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

On the karyotypic origin and evolution of cancer cells.

Cancers have clonal, aneuploid karyotypes that evolve ever more malignant phenotypes spontaneously. Because these facts are hard to explain by conventional mutation theory, we propose here a karyotypic cancer theory. According to this theory, carcinogens initiate carcinogenesis by inducing random aneuploidy. Aneuploidy then catalyzes karyotypic evolutions, because it destabilizes the karyotype ...

متن کامل

Immortality of cancers

Immortality is a common characteristic of cancers, but its origin and purpose are still unclear. Here we advance a karyotypic theory of immortality based on the theory that carcinogenesis is a form of speciation. Accordingly, cancers are generated from normal cells by random karyotypic rearrangements and selection for cancer-specific reproductive autonomy. Since such rearrangements unbalance lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 2008